Basics of Al and Machine Learning
State-Space Search: Breadth-first Search

Jendrik Seipp

Linképing University

Slides modified from Basel Al group, with permission



Blind Search BFS: Introduction BFS-Tree 3FS-Grap BFS Properties Summar

State-Space Search: Overview

Chapter overview: state-space search

m Foundations
m Basic Algorithms
m Data Structures for Search Algorithms
m Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

m Heuristic Algorithms



Blind Search
©00

Blind Search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summar
oe0 00 00 000 oo

Blind Search

In the next three chapters we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (subsequent chapters)



Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
m breadth-first search
m uniform cost search
m depth-first search
m depth-limited search
[

iterative deepening search



Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
m breadth-first search (~~ this chapter)
m uniform cost search
m depth-first search
m depth-limited search
[

iterative deepening search



BFS: Introduction
®00

Breadth-first Search: Introduction



BFS: Introduction
{61 J9)

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

®

open: A



BFS: Introduction
{61 J9)

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: B, C



BFS: Introduction
{61 J9)

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: C, D, E



BFS: Introduction
{61 J9)

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: D, E, F, G, H



BFS: Introduction
{61 J9)

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: E, F, G, H, I, J



Blind Search BFS: Introduction BFS-Tree 3FS-Grap BFS Properties

(] lo}

Summar

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

m searches state space layer by layer

m always finds shallowest goal state first



BFS: Introduction
ocoe

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

m without duplicate elimination (as a tree search)
~» BFS-Tree

m or with duplicate elimination (as a graph search)
~~ BFS-Graph

(BFS = breadth-first search).

~~ We consider both variants.



BFS-Tree



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties
000 000 oe 00 000

BFS-Tree

breadth-first search without duplicate elimination:

BFS-Tree

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
open.push_back(n")
return unsolvable y




BFS-Graph



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary
000 000 00 oe 000 00

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed:
closed.insert(s")
open.push_back(n")
return unsolvable )




Properties of Breadth-first Search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summar
000 000 00 0o 0e0 00

Properties of Breadth-first Search

Properties of Breadth-first Search:
m BFS-Tree is semi-complete, but not complete (cycles)
m BFS-Graph is complete. (avoids cycles)

m BFS (both variants) is optimal
if all actions have the same cost (BFS incrementally checks
longer solution paths),
but not in general (BFS ignores costs).



BFS Properties
ooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?




BFS Properties
ooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates




BFS Properties
ooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
m simpler

m less overhead (time/space) if there are few duplicates




tF Introduction 3 ap BFS Properties
oo ooe

BFS-Tree or BFS- Graph7

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
m simpler

m less overhead (time/space) if there are few duplicates

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.




Summarn
0

Summary



Introduction BFS-Tree 3 Grap! 3FS Properties Summary
oC o

Summary

m blind search algorithm: use no information
except black box interface of state space
m breadth-first search: expand nodes in order of generation
m search state space layer by layer
m can be tree search or graph search
m complete as a graph search; semi-complete as a tree search
m optimal with uniform action costs



	Blind Search
	

	Breadth-first Search: Introduction
	

	BFS-Tree
	

	BFS-Graph
	

	Properties of Breadth-first Search
	

	Summary
	


