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State-Space Search: Overview

Chapter overview: state-space search

Foundations

Basic Algorithms

Data Structures for Search Algorithms
Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

Heuristic Algorithms



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search
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Blind Search

In the next three chapters we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (subsequent chapters)
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Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(⇝ this chapter)

uniform cost search

depth-first search

depth-limited search

iterative deepening search
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Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search

depth-first search

depth-limited search

iterative deepening search
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Breadth-first Search: Introduction
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

open: A

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B C

open: B, C

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D E

C

open: C, D, E

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D E

C

F G H

open: D, E, F, G, H

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

open: E, F, G, H, I, J

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

searches state space layer by layer

always finds shallowest goal state first
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Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
⇝ BFS-Tree

or with duplicate elimination (as a graph search)
⇝ BFS-Graph

(BFS = breadth-first search).

⇝ We consider both variants.
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BFS-Tree
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BFS-Tree

breadth-first search without duplicate elimination:

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable
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BFS-Graph
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BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable
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Properties of Breadth-first Search
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Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete (cycles)

BFS-Graph is complete. (avoids cycles)

BFS (both variants) is optimal
if all actions have the same cost (BFS incrementally checks
longer solution paths),
but not in general (BFS ignores costs).
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BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.
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BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion
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a negligible number of duplicates in the given state space.
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Summary
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Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs
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