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State-Space Search: Overview

Chapter overview: state-space search

m Foundations
m Basic Algorithms
m Data Structures for Search Algorithms
m Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

m Heuristic Algorithms
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Blind Search

In the next three chapters we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (subsequent chapters)



Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
m breadth-first search
m uniform cost search
m depth-first search
m depth-limited search
[

iterative deepening search
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Blind Search Algorithms: Examples

examples of blind search algorithms:
m breadth-first search (~~ this chapter)
m uniform cost search
m depth-first search
m depth-limited search
[

iterative deepening search
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Breadth-first Search: Introduction
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

®

open: A
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: B, C
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: C, D, E
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: D, E, F, G, H
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: E, F, G, H, I, J
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Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

m searches state space layer by layer

m always finds shallowest goal state first



BFS: Introduction
ocoe

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

m without duplicate elimination (as a tree search)
~» BFS-Tree

m or with duplicate elimination (as a graph search)
~~ BFS-Graph

(BFS = breadth-first search).

~~ We consider both variants.
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BFS-Tree

breadth-first search without duplicate elimination:

BFS-Tree

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
open.push_back(n")
return unsolvable y




BFS-Graph



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary
000 000 00 oe 000 00

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed:
closed.insert(s")
open.push_back(n")
return unsolvable )
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Properties of Breadth-first Search

Properties of Breadth-first Search:
m BFS-Tree is semi-complete, but not complete (cycles)
m BFS-Graph is complete. (avoids cycles)

m BFS (both variants) is optimal
if all actions have the same cost (BFS incrementally checks
longer solution paths),
but not in general (BFS ignores costs).
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BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?




BFS Properties
ooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates
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BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
m simpler

m less overhead (time/space) if there are few duplicates
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BFS-Tree or BFS- Graph7

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
m complete

m much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
m simpler

m less overhead (time/space) if there are few duplicates

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.
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Summary

m blind search algorithm: use no information
except black box interface of state space
m breadth-first search: expand nodes in order of generation
m search state space layer by layer
m can be tree search or graph search
m complete as a graph search; semi-complete as a tree search
m optimal with uniform action costs
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