
Basics of AI and Machine Learning
State-Space Search: Breadth-first Search

Jendrik Seipp

Linköping University

Slides modified from Basel AI group, with permission



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

Foundations

Basic Algorithms

Data Structures for Search Algorithms
Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

Heuristic Algorithms



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search

In the next three chapters we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (subsequent chapters)



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(⇝ this chapter)

uniform cost search

depth-first search

depth-limited search

iterative deepening search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search

depth-first search

depth-limited search

iterative deepening search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Introduction



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

open: A

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B C

open: B, C

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D E

C

open: C, D, E

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D E

C

F G H

open: D, E, F, G, H

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

open: E, F, G, H, I, J

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
⇝ e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

searches state space layer by layer

always finds shallowest goal state first



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
⇝ BFS-Tree

or with duplicate elimination (as a graph search)
⇝ BFS-Graph

(BFS = breadth-first search).

⇝ We consider both variants.



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree

breadth-first search without duplicate elimination:

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete (cycles)

BFS-Graph is complete. (avoids cycles)

BFS (both variants) is optimal
if all actions have the same cost (BFS incrementally checks
longer solution paths),
but not in general (BFS ignores costs).



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs


	Blind Search
	

	Breadth-first Search: Introduction
	

	BFS-Tree
	

	BFS-Graph
	

	Properties of Breadth-first Search
	

	Summary
	


