Basics of AI and Machine Learning State-Space Search: Heuristics

Jendrik Seipp

Linköping University

Slides modified from Basel AI group, with permission

Introduction ●0		Properties of Heuristics	Connections 00	

Introduction

Informed Search Algorithms

- search algorithms considered so far: blind because they do not use any aspects of the problem to solve other than its formal definition (state space)
- problem: scalability

 → prohibitive time and space requirements already for seemingly simple problems

- \rightsquigarrow informed ("heuristic") search algorithms

Introduction 00		Properties of Heuristics	Connections 00	

Heuristics

Introduction	Heuristics	Examples	Properties of Heuristics	Examples	Connections	Summary
00	0●00	0000		00	00	00
Heuris	tics					

Definition (heuristic)

Let S be a state space with states S. A heuristic function or heuristic for S is a function

$$h: S \to \mathbb{R}_0^+ \cup \{\infty\},$$

mapping each state to a non-negative number (or ∞).

Heuristics: Intuition

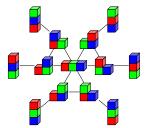
- idea: h(s) estimates distance (= cost of cheapest path) from s to closest goal state
 - heuristics can be arbitrary functions
 - intuition: the closer h is to true goal distance, the more efficient the search using h

Representation of Heuristics

In our black box model, heuristics are an additional element of the state space interface:

State Spaces as Black Boxes (Extended)
<pre>init()</pre>
■ is_goal(<i>s</i>)
■ succ(<i>s</i>)
\bullet cost(a)
h(s): heuristic value for state s
result: non-negative integer or ∞

Introduction 00		Properties of Heuristics	Connections 00	

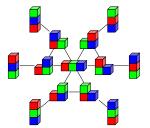

Examples

Introduction Heuristics **Examples** Properties of Heuristics Examples Connections Summ oo ooo oo oo oo oo oo oo

Example: Blocks World

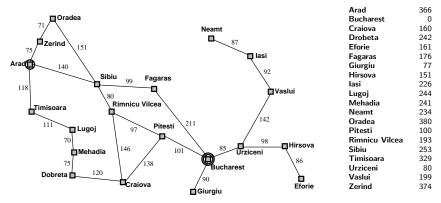
possible heuristic:

count blocks x that currently lie on y and must lie on $z \neq y$ in the goal (including case where y or z is the table)


Introduction Heuristics Examples Properties of Heuristics Examples Connections Sum oo ooo oo oo oo oo oo

Example: Blocks World

possible heuristic:


count blocks x that currently lie on y and must lie on $z \neq y$ in the goal (including case where y or z is the table)

How accurate is this heuristic?

Example: Route Planning in Romania

possible heuristic: straight-line distance to Bucharest

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

- Six people must cross a river.
- Their rowing boat can carry one or two people across the river at a time (it is too small for three).
- Three people are missionaries, three are cannibals.
- Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

- Six people must cross a river.
- Their rowing boat can carry one or two people across the river at a time (it is too small for three).
- Three people are missionaries, three are cannibals.
- Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

→→ with our formulation of states as triples
$$(m, c, b)$$
:
 $h((m, c, b)) = m + c$

	Heuristics 0000	Properties of Heuristics ●00	Connections 00	Summary 00

Properties of Heuristics

Introduction 00		Properties of Heuristics ○●○		

Perfect Heuristic

Definition (perfect heuristic)

Let S be a state space with states S.

The perfect heuristic for S, written h^* , maps each state $s \in S$ to the cost of an optimal solution for s.

remark: $h^*(s) = \infty$ if no solution for s exists

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

- A heuristic h for S is called
 - safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$
 - **goal-aware** if h(s) = 0 for all goal states s
 - admissible if $h(s) \le h^*(s)$ for all states $s \in S$
 - consistent if $h(s) \le cost(a) + h(s')$ for all transitions $s \xrightarrow{a} s'$

		Properties of Heuristics	Connections 00	

Examples

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:

- safe
- goal-aware
- admissible
- consistent

Why?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World

misplaced blocks:

- safe?
- goal-aware?
- admissible?
- consistent?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:

- safe?
- goal-aware?
- admissible?
- consistent?

		Properties of Heuristics		

Connections

Introduction Heuristics Examples Properties of Heuristics Examples OOO Solution OOO Solution OOO Solution OO Solu

Properties of Heuristics: Connections

Theorem (admissible \implies safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

Theorem (goal-aware + consistent \Longrightarrow admissible)

Let h be a goal-aware and consistent heuristic. Then h is admissible.

		Properties of Heuristics		

Summary

Introduction	Heuristics	Examples	Properties of Heuristics	Examples	Connections	Summary
00	0000	0000		00	00	○●
Summ	ary					

- heuristics estimate distance of a state to the goal
 can be used to focus search on promising states
 soon: search algorithms that use heuristics
 - perfect heuristic h*: true cost to the goal
 - important properties: safe, goal-aware, admissible, consistent
 - connections between these properties
 - admissible \implies safe and goal-aware
 - goal-aware and consistent \Longrightarrow admissible