
TDDE56: Reinforcement Learning

Fredrik Heintz
Dept. of Computer Science, Linköping University

fredrik.heintz@liu.se
@FredrikHeintz

Reinforcement Learning Basic Concept
• Reinforcement Learning is learning what to do – how to map

situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction
Sutton & Barto

• Rather than learning from explicit training data, or discovering
patterns in static data, reinforcement learning discovers the best
option (highest reward) from trial and error.

• Inverse Reinforcement Learning

• Learn reward function by observing an expert

• “Apprenticeship learningapprenticeship learning“

• E.g. Abbeel et al. Autonomous Helicopter Aerobatics through
Apprenticeship Learning

A Reinforcement Learning Problem
• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy p: S → A

• Value V p(s) := Si gi rt+i

• Find the optimal policy p* that maximizes
V p*(s) for all states s.

RL Value Function - Example

A minimum time to goal world

Value function Optimal policy Optimal value

for random function

movement

Markov Decision Processes
Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = d(st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions d and r may be non-deterministic

• functions d and r not necessarily known to the agent

MDP Example

r(s,a) V*(s)

An optimal policy

The Q-Function
Optimal policy:

• p*(s) = argmaxa[r (s,a) + gV *(d(s,a))]

• Doesn't work if we don't know r and d.

The Q-function:

• Q (s,a) := r (s,a) + gV *(d(s,a))

• p*(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)

The Q-Function
• Note Q and V* closely related:

V *(s) = maxa' Q (s,a')

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + gV *(d(st ,at)) =

r (st ,at) + g maxa' Q (st+1 ,a')

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + g maxa' Q
^(s',a')

Q-Learning for Deterministic Worlds

For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + g maxa' Q

^(s',a')

5. s := s'

Q-Learning Example

Q ^(s1 ,aright) := r + g maxa' Q
^(s2 ,a')

:= 0 + 0.9 max{63, 81, 100}

:= 90

Q-Learning Continued
• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning

Reinforcement Learning – Neural Networks as Function Approximators
• To tackle a high-dimensional state space or continous states we can use

a neural network as function approximator
• Lunar Lander experiment

• 8 continous/discrete states
• XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact

• 4 discrete actions
• Left thrust
• Right thrust
• Main engine thrust
• NOP

• Rewards
• Move from top to bottom of the screen (+ ~100-140)
• Land between the posts (+100)
• Put legs on ground (+10 per leg)

• Penalties
• Using main engine thrust (-0.3 per frame)
• Crashing (-100)

• Solved using Stochastic Policy Gradients

Reinforcement Learning Neural Networks as Function Approximators

