TDDE56: Reinforcement Learning

Fredrik Heintz Dept. of Computer Science, Linköping University fredrik.heintz@liu.se @FredrikHeintz

Reinforcement Learning Basic Concept

• *Reinforcement Learning is learning what to do – how to map situations to actions – so as to maximum a numerical reward.*

> Reinforcement Learning: An introduction Sutton & Barto

- Rather than learning from explicit training data, or discovering patterns in static data, reinforcement learning discovers the best option (highest reward) from trial and error.
- Inverse Reinforcement Learning
	- Learn reward function by observing an expert
	- "Apprenticeship learningapprenticeship learning"
	- E.g. Abbeel et al. *Autonomous Helicopter Aerobatics through Apprenticeship Learning*

A Reinforcement Learning Problem

- The environment
- The reinforcement function *r(s,a)*
	- Pure delay reward and avoidance problems
	- Minimum time to goal
	- Games
- The value function *V(s)*
	- Policy $\pi: S \to A$
	- Value $V^{\pi}(s) := \sum_i \gamma^i r_{t+i}$
- Find the optimal policy π^* that maximizes $V^{\pi*}(s)$ for all states *s*.

Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where 0< γ <1

RL Value Function - Example

A minimum time to goal world

Markov Decision Processes

Assume:

- finite set of states *S*, finite set of actions *A*
- at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- then receives immediate reward *r^t*
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
	- i.e. r_t and s_{t+1} depend only on current state and action
	- functions δ and r may be non-deterministic
	- functions δ and r not necessarily known to the agent

The Q-Function

Optimal policy:

- $\pi^*(s) = \argmax_a[r(s,a) + \gamma V^*(\delta(s,a))]$
- Doesn't work if we don't know r and δ .

The Q-function:

- $Q(s,a) := r(s,a) + \gamma V^*(\delta(s,a))$
- $\pi^*(s)$ = argmax_aQ (*s*,*a*)

The Q-Function

- Note Q and V^* closely related: $V^*(s) = \max_{a'} Q(s, a')$
- Therefore Q can be written as: $Q(s_t, a_t) := r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)) =$ $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$
- If Q^{\wedge} denote the current approximation of Q then it can be updated by: $Q^{(n)}(s,a) := r + \gamma \max_{a'} Q^{(n)}(s',a')$

Q-Learning for Deterministic Worlds

For each *s*, *a* initialize table entry $Q^{(0)}(s,a) := 0$. Observe current state *s*.

Do forever:

- 1. Select an action *a* and execute it
- 2. Receive immediate reward *r*
- 3. Observe the new state *s'*
- 4. Update the table entry for $Q^{\wedge}(s,a)$: $Q^{(n)}(s,a) := r + \gamma \max_{a'} Q^{(n)}(s',a')$

$$
5. \quad s := s'
$$

Q-Learning Example

$$
Q^{(1)}(s_1, a_{right) := r + \gamma \max_{a'} Q^{(1)}(s_2, a')
$$

:= 0 + 0.9 max{63, 81, 100}
:= 90

Q-Learning Continued

- Exploration
	- Selecting the best action
	- Probabilistic choice
- Improving convergence
	- Update sequences
	- Remember old state-action transitions and their immediate reward
- Non-deterministic MDPs
- Temporal Difference Learning

Reinforcement Learning – Neural Networks as Function Approximators

- To tackle a high-dimensional state space or continous states we can use a neural network as function approximator
- Lunar Lander experiment
	- 8 continous/discrete states
		- XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
	- 4 discrete actions
		- Left thrust
		- Right thrust
		- Main engine thrust
		- NOP
	- Rewards
		- Move from top to bottom of the screen $(+ \sim 100 140)$
		- Land between the posts (+100)
		- Put legs on ground (+10 per leg)
	- Penalties
		- Using main engine thrust (-0.3 per frame)
		- Crashing (-100)
- Solved using Stochastic Policy Gradients

Reinforcement Learning Neural Networks as Function Approximators

