TDDE56: Reinforcement Learning

Fredrik Heintz Dept. of Computer Science, Linköping University fredrik.heintz@liu.se @FredrikHeintz

Reinforcement Learning Basic Concept

• Reinforcement Learning is learning what to do – how to map situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction Sutton & Barto

- Rather than learning from explicit training data, or discovering patterns in static data, reinforcement learning discovers the best option (highest reward) from trial and error.
- Inverse Reinforcement Learning
 - Learn reward function by observing an expert
 - "Apprenticeship learningapprenticeship learning"
 - E.g. Abbeel et al. *Autonomous Helicopter Aerobatics through Apprenticeship Learning*

A Reinforcement Learning Problem

- The environment
- The reinforcement function *r*(*s*,*a*)
 - Pure delay reward and avoidance problems
 - Minimum time to goal
 - Games
- The value function *V*(*s*)
 - Policy $\pi: S \to A$
 - Value $V^{\pi}(s) := \Sigma_i \gamma^i r_{t+i}$
- Find the optimal policy π* that maximizes V^{π*}(s) for all states s.

Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where $0 < \gamma < 1$

RL Value Function - Example

A minimum time to goal world

Markov Decision Processes

Assume:

- finite set of states *S*, finite set of actions *A*
- at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- then receives immediate reward r_t
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e. r_t and s_{t+1} depend only on current state and action
 - functions δ and r may be non-deterministic
 - functions δ and r not necessarily known to the agent

The Q-Function

Optimal policy:

- $\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$
- Doesn't work if we don't know r and δ .

The Q-function:

- $Q(s,a) := r(s,a) + \gamma V^*(\delta(s,a))$
- $\pi^*(s) = \operatorname{argmax}_a Q(s,a)$

Q(s,a)

The Q-Function

- Note Q and V* closely related: $V^*(s) = \max_{a'}Q(s,a')$
- Therefore Q can be written as: $Q(s_t, a_t) := r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)) = r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$
- If Q^{\wedge} denote the current approximation of Q then it can be updated by: $Q^{\wedge}(s,a) := r + \gamma \max_{a'} Q^{\wedge}(s',a')$

Q-Learning for Deterministic Worlds

For each *s*, *a* initialize table entry $Q^{(s,a)} := 0$. Observe current state *s*.

Do forever:

- 1. Select an action *a* and execute it
- 2. Receive immediate reward r
- 3. Observe the new state *s*'
- 4. Update the table entry for $Q^{(s,a)}$: $Q^{(s,a)} := r + \gamma \max_{a'} Q^{(s',a')}$

5.
$$s := s'$$

Q-Learning Example

$$Q^{(s_1,a_{right})} := r + \gamma \max_{a'} Q^{(s_2,a')}$$

:= 0 + 0.9 max{63, 81, 100}
:= 90

Q-Learning Continued

- Exploration
 - Selecting the best action
 - Probabilistic choice
- Improving convergence
 - Update sequences
 - Remember old state-action transitions and their immediate reward
- Non-deterministic MDPs
- Temporal Difference Learning

Reinforcement Learning – Neural Networks as Function Approximators

- To tackle a high-dimensional state space or continous states we can use a neural network as function approximator
- Lunar Lander experiment
 - 8 continous/discrete states
 - XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
 - 4 discrete actions
 - Left thrust
 - Right thrust
 - Main engine thrust
 - NOP
 - Rewards
 - Move from top to bottom of the screen (+ \sim 100-140)
 - Land between the posts (+100)
 - Put legs on ground (+10 per leg)
 - Penalties
 - Using main engine thrust (-0.3 per frame)
 - Crashing (-100)
- Solved using Stochastic Policy Gradients

Reinforcement Learning Neural Networks as Function Approximators

