Foundations of AI and Machine Learning

Constraint Satisfaction Problems: Introduction and Examples

Daniel Gnad

Linköping University

Introduction

Constraints

What is a Constraint?

a condition that every solution to a problem must satisfy

Examples: Where do constraints occur?

- mathematics: requirements on solutions of optimization problems (e.g., equations, inequalities)
- software testing: specification of invariants to check data consistency (e.g., assertions)

Constraint Satisfaction Problems: Informally

Given:

- set of variables with corresponding domains
- set of constraints that the variables must satisfy
 - most commonly binary, i.e., every constraint refers to two variables

Solution:

assignment to the variables that satisfies all constraints

Examples

Examples

- 8 queens problem
- Sudoku
- graph coloring
- satisfiability in propositional logic

more complex examples:

- systems of equations and inequalities
- database queries

Example: 8 Queens Problem

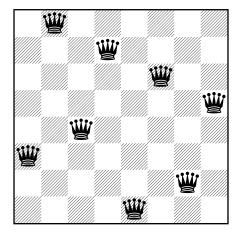
8 Queens Problem

How can we

- place 8 queens on a chess board
- such that no two queens threaten each other?
- originally proposed in 1848
- variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count symmetric solutions (under rotation or reflection) as distinct.

8 Queens Problem: Example Solution



example solution for the 8 queens problem

Example: Sudoku

Sudoku

How can we

- completely fill an already partially filled 9×9 matrix with numbers between 1–9
- such that each row, each column, and each of the nine 3 × 3 blocks contains every number exactly once?

2	5			3		9		1
	1				4			
4		7				2		8
		5	2					
				9	8	1		
	4				3			
			3	6			7	2
	7							3
9		3				6		4

Example: Sudoku

Sudoku

How can we

- \blacksquare completely fill an already partially filled 9×9 matrix with numbers between 1-9
- such that each row, each column, and each of the nine 3×3 blocks contains every number exactly once?

2	5	8	7		6	9	4	1
6	1	9	8	2	4	3	5	7
4	3	7	9	1	5	2	6	8
3	9	5	2	7	1	4	8	6
7	6	2	4	9	8	1	3	5
8	4	1	6	5	3	7	2	9
1	8	4	3	6	9	5	7	2
5	7	6	1	4	2	8	9	3
9	2	3	5	8	7	6	1	4

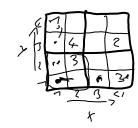
Sudoku: Small Example

Variables . Vxy, Vm: 11.2.3,6} by: 17.7.3,06,

Cohe/rain/50 por. Put ria. V2 + v2 . いっキレッフ.

> vint ver V12 + L21

いったいっ Van + Van



Columbs: Yn f La,

Sudoku: Trivia

- well-formed Sudokus have exactly one solution
- \blacksquare to achieve well-formedness, ≥ 17 cells must be filled already (McGuire et al., 2012)
- 6 670 903 752 021 072 936 960 solutions
- only 5 472 730 538 "non-symmetrical" solutions

Example: Graph Coloring

Graph Coloring

How can we

- \blacksquare color the vertices of a given graph using k colors
- such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

Example: Graph Coloring

Graph Coloring

How can we

- **color the vertices** of a given graph using *k* colors
- such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem

- even for the special case of planar graphs and k=3
- easy for k = 2 (also for general graphs)

Example: Graph Coloring

Graph Coloring

How can we

- **color the vertices** of a given graph using *k* colors
- such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem

- even for the special case of planar graphs and k=3
- \blacksquare easy for k=2 (also for general graphs)

Relationship to Sudoku?

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years

Four Color Problem

famous problem in mathematics: Four Color Problem

- Is it always possible to color a planar graph with 4 colors?
- conjectured by Francis Guthrie (1852)
- 1890 first proof that 5 colors suffice
- several wrong proofs surviving for over 10 years
- solved by Appel and Haken in 1976: 4 colors suffice
- Appel and Haken reduced the problem to 1936 cases, which were then checked by computers
- first famous mathematical problem solved (partially)
 by computers
 - → led to controversy: is this a mathematical proof?

Numberphile video:

https://www.youtube.com/watch?v=NgbK43jB4rQ

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?

remarks:

- NP-complete (Cook 1971; Levin 1973)
- formulas expressed as clauses (instead of arbitrary propositional formulas) is no restriction
- clause length bounded by 3 would not be a restriction

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

- assign truth values (true/false) to a set of propositional variables
- such that a given set of clauses (formulas of the form $X \vee \neg Y \vee Z$) is satisfied (true)?

remarks:

- NP-complete (Cook 1971; Levin 1973)
- formulas expressed as clauses (instead of arbitrary propositional formulas) is no restriction
- clause length bounded by 3 would not be a restriction

relationship to previous problems (e.g., Sudoku)?

Practical Applications

- There are thousands of practical applications of constraint satisfaction problems.
- This statement is true already for the satisfiability problem of propositional logic.

some examples:

- verification of hardware and software
- timetabling (e.g., generating time schedules, room assignments for university courses)
- assignment of frequency spectra (e.g., broadcasting, mobile phones)

Summary

Summary

- constraint satisfaction:
 - find assignment for a set of variables
 - with given variable domains
 - that satisfies a given set of constraints.

examples:

- 8 queens problem
- Sudoku
- graph coloring
- satisfiability in propositional logic
- many practical applications