Basics of AI and Machine Learning Automated Planning: Introduction

David Speck

Linköping University

Slides modified from Basel AI group, with permission

Classification

classification:

Automated Planning

environment:

- static vs. dynamic
- **deterministic vs.** non-deterministic vs. stochastic
- **fully vs.** partially vs. not observable
- discrete vs. continuous
- single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

[Introduction](#page-2-0)

Automated Planning

What is Automated Planning?

"Planning is the art and practice of thinking before acting."

— P. Haslum

 \rightarrow finding plans (sequences of actions) that lead from an initial state to a goal state

Here: classical planning

- **Exercise 2** general approach to finding solutions for state-space search problems
- classical $=$ static, deterministic, fully observable
- variants: probabilistic planning, planning under partial observability, online planning, . . .

Planning: Informally

given:

 \blacksquare state space description in terms of suitable problem description language (planning formalism)

required:

- \blacksquare a plan, i.e., a solution for the described state space (sequence of actions from initial state to goal)
- or a proof that no plan exists

distinguish between

- optimal planning: guarantee that returned plans are optimal, i.e., have minimal overall cost
- suboptimal planning (satisficing): suboptimal plans are allowed

What is New?

Many previously encountered problems are planning tasks:

- **blocks** world
- \blacksquare route planning in romania
- **missionaries and cannibals**
- **15-puzzle**

New: we are now interested in general algorithms, i.e., the developer of the search algorithm does not know the tasks that the algorithm needs to solve.

- \rightarrow no problem-specific heuristics!
- \rightarrow input language to model the planning task

Automated Planning: Overview

Chapter overview: automated planning

- **Introduction**
- The STRIPS Planning Formalism
- **Demon Planning Formalisms**
- **Planning Heuristics**
- **Alternatives to Heuristic Search**

[Compact Descriptions](#page-7-0)

[Introduction](#page-2-0) [Compact Descriptions](#page-7-0) [Summary](#page-11-0)

Reminder: State Space

(action names omitted; initial state and goal can be arbitrary)

state spaces are (labeled, directed) graphs $\overline{}$

terminology: predecessor, successor, applicable action, path, length, costs, reachable, solution, optimal solution

State Spaces with Declarative Representations

How do we represent state spaces in the computer?

previously: as black box

now: as declarative description

State Spaces with Declarative Representations

represent state spaces declaratively:

- **Compact description of state space as input to algorithms** \rightsquigarrow state spaces exponentially larger than the input
- **a** algorithms directly operate on compact description
- \rightarrow allows automatic reasoning about problem: reformulation, simplification, abstraction, etc.

Compact Description of State Spaces

How to describe state spaces compactly?

Compact Description of Several States

- **n** introduce state variables
- states: assignments to state variables
- \rightsquigarrow e.g., *n* binary state variables can describe 2ⁿ states
	- **transitions and goal are compactly described** with a logic-based formalism

different variants: different planning formalisms

[Summary](#page-11-0)

Summary

- planning: search in general state spaces
- **n** input: compact, declarative description of state space