Basics of Al and Machine Learning Propositional Logic: DPLL Algorithm

Daniel Gnad

Linköping University

Motivation

Propositional Logic: Motivation

- Propositional logic allows for the representation of knowledge and for deriving conclusions based on this knowledge.
- many practical applications can be directly encoded, e.g.
 - constraint satisfaction problems of all kinds
 - circuit design and verification
- many problems contain logic as ingredient, e.g.
 - automated planning
 - general game playing
 - description logic queries (semantic web)

Propositional Logic: Algorithmic Problems

main problems:

- reasoning $(\Theta \models \varphi?)$:
 Does the formula φ logically follow from the formulas Θ ?
- equivalence $(\varphi \equiv \psi)$: Are the formulas φ and ψ logically equivalent?
- \blacksquare satisfiability (SAT): Is formula φ satisfiable? If yes, find a model.

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

propositional formula in conjunctive normal form (CNF) usually represented as pair $\langle V, \Delta \rangle$:

- V set of propositional variables (propositions)
- Δ set of clauses over V(clause = set of literals v or $\neg v$ with $v \in V$)

find:

- satisfying interpretation (model)
- or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Relevance of SAT

- The name "SAT" is often used for the satisfiability problem for general propositional formulas (instead of restriction to CNF).
- General SAT can be reduced to CNF.
- All previously mentioned problems can be reduced to SAT.
- → SAT algorithms important and intensively studied

this chapter: SAT algorithms

Systematic Search: DPLL

The DPLL Algorithm: Pseudo-Code

```
function DPLL(\Delta, I):
if \square \in \Delta:
                                              [empty clause exists \rightsquigarrow unsatisfiable]
      return unsatisfiable
else if \Delta = \emptyset: [no clauses left \leftrightarrow interpretation / satisfies formula]
      return /
else if there exists a unit clause \{v\} or \{\neg v\} in \Delta: [unit propagation]
      Let v be such a variable, d the truth value that satisfies the clause.
      \Delta' := simplify(\Delta, v, d)
      return DPLL(\Delta', I \cup \{v \mapsto d\})
else:
                                                                          splitting rule
      Select some variable v which occurs in \Delta.
      for each d \in \{F, T\} in some order:
            \Delta' := simplify(\Delta, v, d)
            I' := \mathsf{DPLL}(\Delta', I \cup \{v \mapsto d\})
            if I' \neq unsatisfiable
                  return I'
      return unsatisfiable
```

The DPLL Algorithm: simplify

function simplify(Δ , v, d)

Let ℓ be the literal for ν that is satisfied by $\nu \mapsto d$.

 $\Delta' := \{C \mid C \in \Delta \text{ such that } \ell \notin C\}$

 $\Delta'' := \{ \textit{C} \setminus \{ \bar{\ell} \} \mid \textit{C} \in \Delta' \}$

 $return \ \Delta''$

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

1 unit propagation: $Z \mapsto \mathbf{T}$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

• unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:

2a.
$$X \mapsto \mathbf{F}$$
 $\{\{Y\}, \{\neg Y\}\}$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

$$\Delta = \{ \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:

2a.
$$X \mapsto \mathbf{F}$$
 2b. $X \mapsto \mathbf{T}$ $\{\{Y\}, \{\neg Y\}\}$

3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

$$\Delta = \{ \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

- 2b. $X \mapsto \mathbf{T}$ $\{\{\neg Y\}\}$
- 3b. unit propagation: $Y \mapsto \mathbf{F}$ {}

$$\Delta = \{ \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- unit propagation: $Z \mapsto T$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

- 2b. $X \mapsto T$ $\{\{\neg Y\}\}$
- 3b. unit propagation: $Y \mapsto \mathbf{F}$ {}

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}$$

• unit propagation: $Z \mapsto \mathbf{T}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$
- unit propagation: $Y \mapsto \mathbf{T}$ $\{\{W\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$
- unit propagation: $Y \mapsto \mathbf{T}$ $\{\{W\}\}$
- unit propagation: $W \mapsto \mathbf{T}$ {}

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}$
- unit propagation: $Y \mapsto T$ $\{\{W\}\}$
- unit propagation: $W \mapsto T$ {}

Properties of DPLL

- DPLL is sound and complete.
- DPLL computes a model if a model exists.
 - Some variables possibly remain unassigned in the solution I; their values can be chosen arbitrarily.
- time complexity in general exponential
- important in practice: good variable order and additional inference methods (in particular clause learning)
 - Best known SAT algorithms are based on DPLL.

Summary

Summary

- satisfiability basic problem in propositional logic to which other problems can be reduced
- here: satisfiability for CNF formulas
- Davis-Putnam-Logemann-Loveland procedure (DPLL): systematic backtracking search with unit propagation as inference method
- DPLL successful in practice, in particular when combined with other ideas such as clause learning