Basics of AI and Machine Learning Propositional Logic: DPLL Algorithm

Daniel Gnad

Linköping University

Slides modified from Basel AI group, with permission

[Motivation](#page-1-0)

Propositional Logic: Motivation

- **Propositional logic allows for the representation of knowledge** and for deriving conclusions based on this knowledge.
- **n** many practical applications can be directly encoded, e.g.
	- constraint satisfaction problems of all kinds
	- circuit design and verification
- many problems contain logic as ingredient, e.g.
	- automated planning
	- general game playing
	- description logic queries (semantic web)

Propositional Logic: Algorithmic Problems

main problems:

r reasoning $(\Theta \models \varphi?)$:

Does the formula φ logically follow from the formulas Θ ?

equivalence $(\varphi \equiv \psi)$:

Are the formulas φ and ψ logically equivalent?

satisfiability (SAT):

Is formula φ satisfiable? If yes, find a model.

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

propositional formula in conjunctive normal form (CNF)

usually represented as pair $\langle V, \Delta \rangle$:

 \blacksquare V set of propositional variables (propositions)

```
■ △ set of clauses over V
  (clause = set of literals v or \neg v with v \in V)
```
find:

- satisfying interpretation (model)
- or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Relevance of SAT

- The name "SAT" is often used for the satisfiability problem for general propositional formulas (instead of restriction to CNF).
- General SAT can be reduced to CNF.
- All previously mentioned problems can be reduced to SAT.
- \rightarrow SAT algorithms important and intensively studied

this chapter: SAT algorithms

[Systematic Search: DPLL](#page-6-0)

The DPLL Algorithm: Pseudo-Code

function DPLL($\overline{\Delta}$, I):

if $\square \in \Delta$: $\qquad \qquad$ [empty clause exists \rightsquigarrow unsatisfiable]

return unsatisfiable

else if $\Delta = \emptyset$: [no clauses left \rightsquigarrow interpretation *I* satisfies formula] return I

else if there exists a unit clause $\{v\}$ or $\{\neg v\}$ in Δ : [unit propagation] Let v be such a variable, d the truth value that satisfies the clause. $\Delta' :=$ simplify (Δ, v, d) return DPLL $(\Delta', I \cup \{v \mapsto d\})$

else: [splitting rule]

Select some variable v which occurs in ∆.

```
for each d \in \{F, T\} in some order:
      \Delta' := simplify(\Delta, v, d)I' := \text{DPLL}(\Delta', I \cup \{v \mapsto d\})if I' \neq unsatisfiable
            return I
′
return unsatisfiable
```
The DPLL Algorithm: simplify

function simplify(Δ , v, d)

Let ℓ be the literal for v that is satisfied by $v \mapsto d$. $\Delta' := \{ C \mid C \in \Delta \text{ such that } \ell \notin C \}$ $\Delta'':=\{C\setminus\{\bar{\ell}\}\mid C\in \Delta'\}$ return ∆′′

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

1. unit propagation: $Z \mapsto T$

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

1. unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **1.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2 splitting rule:

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **1.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2 splitting rule:

2a. $X \mapsto F$ $\{\{Y\}, \{\neg Y\}\}\$

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2. splitting rule:
- 2a. $X \mapsto F$ $\{\{Y\}, \{\neg Y\}\}\$ 3a. unit propagation: $Y \mapsto T$ {□}

{□}

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2. splitting rule:
- 2a. $X \mapsto F$ $\{\{Y\}, \{\neg Y\}\}\$ 3a. unit propagation: $Y \mapsto T$ 2b. $X \mapsto T$ $\{ {\neg Y} \}$

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2. splitting rule:
- 2a. $X \mapsto F$ $\{\{Y\}, \{\neg Y\}\}\$ 3a. unit propagation: $Y \mapsto T$ {□} 2b. $X \mapsto T$ $\{ {\neg Y} \}$ 3b. unit propagation: $Y \mapsto F$ {}

$$
\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}\$
- 2. splitting rule:
- 2a. $X \mapsto F$ $\{\{Y\}, \{\neg Y\}\}\$ 3a. unit propagation: $Y \mapsto T$ {□} 2b. $X \mapsto T$ $\{ {\neg Y} \}$ 3b. unit propagation: $Y \mapsto F$ {}

 $\Delta = \{ \{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\} \}$

$\Delta = \{ \{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\} \}$

0. unit propagation: $Z \mapsto T$

$$
\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}
$$

$$
\begin{matrix} \text{0} & \text{unit propagation: } Z \mapsto \mathbf{T} \\ {\{W, \neg X, \neg Y\}, \{X\}, \{Y\}} \end{matrix}
$$

$$
\Delta = \{ \{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\} \}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\$
- 2. unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}\$

$$
\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\$
- 2. unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}\$
- 3. unit propagation: $Y \mapsto T$ $\{ \{ W \} \}$

$$
\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}
$$

- **0.** unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\$
- 2. unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}\$
- 3. unit propagation: $Y \mapsto T$ $\{ \{ W \} \}$
- 4. unit propagation: $W \mapsto T$ {}

 $\Delta = \{ \{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\} \}$

- **0.** unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\$
- 2. unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}\$
- 3. unit propagation: $Y \mapsto T$ $\{ \{ W \} \}$
- 4. unit propagation: $W \mapsto T$ {}

Properties of DPLL

- DPLL is sound and complete.
- **DPLL** computes a model if a model exists.
	- Some variables possibly remain unassigned in the solution I ; their values can be chosen arbitrarily.
- time complexity in general exponential
- \rightarrow important in practice: good variable order and additional inference methods (in particular clause learning)
	- Best known SAT algorithms are based on DPLL.

[Summary](#page-26-0)

Summary

- satisfiability basic problem in propositional logic to which other problems can be reduced
- **here:** satisfiability for CNF formulas
- Davis-Putnam-Logemann-Loveland procedure (DPLL): systematic backtracking search with unit propagation as inference method
- DPLL successful in practice, in particular when combined with other ideas such as clause learning