Basics of AI and Machine Learning Planning Heuristics

David Speck

Linköping University

Slides modified from Basel AI group, with permission

Examples 0000 Summary 00

How to Design Heuristics?

A Simple Planning Heuristic: Goal Count

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of goals not yet satisfied in a STRIPS planning task as heuristic:

 $h(s) := |G \setminus s|.$

intuition: fewer unsatisfied goals \rightsquigarrow closer to goal state

A Simple Planning Heuristic: Goal Count

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of goals not yet satisfied in a STRIPS planning task as heuristic:

 $h(s) := |G \setminus s|.$

intuition: fewer unsatisfied goals \rightsquigarrow closer to goal state

drawback of goal count heuristic:

- rather uninformed
- ignores almost the whole task structure: The heuristic values do not depend on the actions.

 \rightsquigarrow we need better methods to design heuristics

Planning Heuristics

There are different types of general heuristics:

- delete relaxation ~> this chapter
- abstraction ~→ not in this course
- landmarks ~> not in this course
- • •

Delete Relaxation: Basic Idea

Estimate solution costs by considering a simplified planning task, where all negative action effects are ignored.

Automated Planning: Overview

Chapter overview: automated planning

- Introduction
- The STRIPS Planning Formalism
- Other Planning Formalisms
- Planning Heuristics
- Alternatives to Heuristic Search

Relaxed Planning Tasks: Idea

In STRIPS planning tasks,

good and bad effects are easy to distinguish:

- Add effects are always useful.
- Delete effects are always harmful.

idea for designing heuristics: ignore all delete effects

Examples 0000

Relaxed Planning Tasks

Definition (relaxation of actions)

The relaxation a^+ of STRIPS action a is the action with $pre(a^+) = pre(a)$, $add(a^+) = add(a)$, $cost(a^+) = cost(a)$, and $del(a^+) = \emptyset$.

Definition (relaxation of planning tasks)

The relaxation Π^+ of a STRIPS planning task $\Pi = \langle V, I, G, A \rangle$ is the task $\Pi^+ := \langle V, I, G, \{a^+ \mid a \in A\} \rangle$.

Relaxed Planning Tasks

Definition (relaxation of action sequences)

The relaxation of action sequence $\pi = \langle a_1, \dots, a_n \rangle$ is the action sequence $\pi^+ := \langle a_1^+, \dots, a_n^+ \rangle$.

Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks.
- Plans for relaxed planning tasks are called relaxed plans.
- If Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π .

Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks.
- Plans for relaxed planning tasks are called relaxed plans.
- If Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π .
- $h^+(\Pi)$ denotes the cost of an optimal plan for Π^+ , i.e., of an optimal relaxed plan.
- analogously: h⁺(s) cost of optimal relaxed plan starting in state s (instead of initial state)
- h^+ is called optimal relaxation heuristic.

How to Design Heuristics?	Delete Relaxation	Examples
		•000 (

Examples

low to Design Heuristics?	Delete Relaxation	Examples	Summary
2000	00000	0●00	00
Example: Logistics			

Example (Logistics Task)

. . .

- variables: $V = \{at_{AL}, at_{AR}, at_{BL}, at_{BR}, at_{TL}, at_{TR}, in_{AT}, in_{BT}\}$
- initial state: $I = \{at_{AL}, at_{BR}, at_{TL}\}$

• goals:
$$G = \{at_{AR}, at_{BL}\}$$

■ actions: { *move*_{LR}, *move*_{RL}, *load*_{AL}, *load*_{AR}, *load*_{BL}, *load*_{BR}, *unload*_{AL}, *unload*_{AR}, *unload*_{BL}, *unload*_{BR}}

How to Design Heuristics?	Delete Relaxation	Examples	Summary
0000		0●00	00
E 1 1 1 1 1			

Example: Logistics

Example (Logistics Task)

. . . .

- pre(move_{LR}) = {at_{TL}}, add(move_{LR}) = {at_{TR}}, del(move_{LR}) = {at_{TL}}, cost(move_{LR}) = 1
- $pre(load_{AL}) = \{at_{TL}, at_{AL}\}, add(load_{AL}) = \{in_{AT}\}, del(load_{AL}) = \{at_{AL}\}, cost(load_{AL}) = 1$
- pre(unload_{AL}) = {at_{TL}, in_{AT}}, add(unload_{AL}) = {at_{AL}}, del(unload_{AL}) = {in_{AT}}, cost(unload_{AL}) = 1

Examples 00●0

Example: Logistics

optimal plan:

- load_{AL}
- 2 moveLR
- InloadAR
- Ioad_{BR}
- 5 move_{RL}
- unload_{BL}

•
$$h^*(I) = 6$$

Examples

Example: Logistics

- optimal plan:
 - load_{AL}
 - 2 move_{LR}
 - 🗿 unload_{AR}
 - Ioad_{BR}
 - Move_{RL}
 - unload_{BL}

• $h^*(I) = 6$

- optimal relaxed plan:
 - load_{AL}
 - 2 move_{LR}
 - InloadAR
 - Ioad_{BR}
 - X move_{RL}
 - unload_{BL}

• $h^+(I) = 5$

How to Design Heuristics?	Delete Relaxation	Examples	Summary
	00000	000●	00
Relaxed Solutions:	Suboptimal or	Optimal?	

■ For general STRIPS planning tasks, *h*⁺ is an admissible and consistent heuristic.

Relaxed Solutions: Suboptimal or Optimal?

- For general STRIPS planning tasks, h⁺ is an admissible and consistent heuristic.
- Can *h*⁺ be computed efficiently?
 - It is easy to solve delete-free planning tasks suboptimally. (How?)
 - optimal solution (and hence the computation of h⁺) is NP-hard (reduction from SET COVER)
- In practice, heuristics approximate h^+ from below or above.

Example: 0000 Summary ●0

Summary

Summary

delete relaxation:

- ignore negative effects (delete effects) of actions
- use solution costs of relaxed planning task as heuristic for solution costs of the original planning task
- computation of optimal relaxed solution costs h⁺ is NP-hard, hence usually approximated from below or above