Basics of Al and Machine Learning
State-Space Search: Best-first Graph Search

Jendrik Seipp

Linképing University

Slides modified from Basel Al group, with permission

Best-first Search

Best-first Search G Best-first Search A ted A Summar

0O@0000

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

m decision which node is most promising uses heuristics. . .

m ...but not necessarily exclusively.

m implementation essentially like uniform cost search

m different choices of f ~~ different search algorithms

Best-first Search Best-first Search

0O@0000

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

m decision which node is most promising uses heuristics. . .

m ...but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

m implementation essentially like uniform cost search

m different choices of f ~~ different search algorithms

Best-first Search
00000

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

Best-first Search
00000

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts

Best-first Search
00000

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:
m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts
m f(n) = g(n) + h(n.state): A*
~ combination of path cost and heuristic

Best-first Search
00000

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts

m f(n) = g(n) + h(n.state): A*
~ combination of path cost and heuristic

m f(n) = g(n) + w - h(n.state): weighted A*
w € Rsr is a parameter
~ interpolates between greedy best-first search and A*

Best-first Search
00000

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts

m f(n) = g(n) + h(n.state): A*
~ combination of path cost and heuristic

m f(n) = g(n) + w - h(n.state): weighted A*
w € Rsr is a parameter
~ interpolates between greedy best-first search and A*

What do we obtain with f(n) := g(n)? ~- uniform cost search

Best-first Search
00000

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

m here: graph search (i.e., with duplicate elimination),
which is the more common case

Best-first Search Gre Sest-first Search

0000e0

Best-first Search

Best-first Search

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s’) < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable)

Best-first Search
00000e

Best-first Search: Properties

properties:
m complete if h is safe: duplicate detection

m optimality depends on f

Greedy Best-first Search

@0000

Greedy Best-first Search

Greedy Best-first Search
0®000

Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f(n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)

Greedy Best-first Search

[e]e] le]e}

Example: Greedy Best-first Search for Route Planning

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

L Fagaras 176
AradCl Giurgiu 7
Hirsova 151

us [JVaslui :_a:éoj gii
Mehadia 241

Neamt 234

Oradea 380

Pitesti 100

) Rimnicu Vilcea 193

[JHirsova Sibiu 253

5 86 Timisoara 329

Urziceni 80

Dobreta u Vaslui 199

Eforie Zerind 374

Greedy Best-first Search
00080

Example: Greedy Best-first Search for Route Planning

(@) Theinitial state

366

Greedy Best-first Search
00080

Example: Greedy Best-first Search for Route Planning

(@ Theinitial state

366

(b) After expanding Arad CArad >
ST o>

253 329 374

Greedy Best-first Search
00080

Example: Greedy Best-first Search for Route Planning

(@ Theinitial state
366
(b) After expanding Arad CArad >
> Sbiu D Czeind>
253 329 374

(c) After expanding Sibiu

Rimnicu Vilce

366 176 380 193

Greedy Best-first Search
00080

(@ Theinitial state

(b) After expanding Arad

Greedy Best-first Search

Weighted A Summar
0000® 000000 000 oo

Greedy Best-first Search: Properties

m complete with safe heuristics
(like all variants of best-first graph search)

m suboptimal: solutions can be arbitrarily bad

m often very fast: one of the fastest search algorithms in practice

@00000

A>l<

Best-first Search A* W ted A Summar

O@0000

combine greedy best-first search with uniform cost search:
f(n) = g(n) + h(n.state)

m trade-off between path cost and proximity to goal

m f(n) estimates overall cost of cheapest solution
from initial state via n to the goal

A
008000

A*: Citations

= hart nilsson raphael n

Scholar YEAR ¥ =
A formal basis for the heuristic determination of minimum cost paths [PDF] ieee.org
PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - Get fulltext Uni Basel

ieeexplore.ieee.org

Although the problem of determining the minimum cost path through a graph arises naturally
in a number of interesting applications, there has been no underlying theory to guide the ...
Yr Save D9 Cite Cited by 12083 Related articles All 4 versions 9%

Correction to" a formal basis for the heuristic determination of minimum Get fulltext Uni Basel
cost paths”

PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding

algorithm, A*, and proved that it had two important properties. In the notation of the paper, we ...

Yr Save D9 Cite Cited by 541 Related articles All 11 versions

Shakey: from conception to history [PDF] @aaai.org
B Kuipers, EA Feigenbaum, PE Hart, NJ Nilsson - Ai Magazine, 2017 - ojs.aaai.org Get fulltext Uni Basel

... One, called A" by its creators, Peter Hart, Nils Nilsson, and Bertram Raphael, had two very
desirable properties. It can be rigorously proved that (a) it always finds the shortest path, and (...
Yr Save D9 Cite Cited by 35 Related articles All 5 versions $9

A
008000

A*: Citations

= hart nilsson raphael n

Scholar YEAR ¥ =
A formal basis for the heuristic determination of minimum cost paths [PDF] ieee.org
PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - Get fulltext Uni Basel

ieeexplore.ieee.org
Although the problem of determining the minimum cost path through a graph arises naturally
in a number of interesting applications, there has been no underlying theory to guide the ...

Yr Save D9 Cite Cited by Related articles All 4 versions $%

Correction to" a formal basis for the heuristic determination of minimum Get fulltext Uni Basel
cost paths”

PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding

algorithm, A*, and proved that it had two important properties. In the notation of the paper, we ...

Yr Save D9 Cite Cited by 541 Related articles All 11 versions

Shakey: from conception to history [PDF] @aaai.org
B Kuipers, EA Feigenbaum, PE Hart, NJ Nilsson - Ai Magazine, 2017 - ojs.aaai.org Get fulltext Uni Basel

... One, called A" by its creators, Peter Hart, Nils Nilsson, and Bertram Raphael, had two very
desirable properties. It can be rigorously proved that (a) it always finds the shortest path, and (...
Yr Save D9 Cite Cited by 35 Related articles All 5 versions $9

A
00000

[JHirsova

Dobreta] .
Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374

A*
000080

Example: A" for Route Planning

(a) Theinitial state

366=0+366

A*
000080

Example: A" for Route Planning

(a) Theinitial state

366=0+366

o @“pa“
> Sibiu D Timisoad Czeind>

393=140+253 447=118+329 449=75+374

A*

000080

Example: A" for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

imisoad

393=140+253 447=118+329

449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

A*

000080

Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

Cimisoard

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374
646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea CArad >

449=75+374

526=366+160 417=317+100 553=300+253

A*

000080

Example: A" for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

526=366+160,

591=338+253 450=450+0

418=418+0 615=455+160 607=414+193

A*
0O0000e

A*: Properties

m complete with safe heuristics
(like all variants of best-first graph search)

m with reopening: optimal with admissible heuristics

m without reopening: optimal with heuristics
that are admissible and consistent

Weighted A*

Weighted A*
oeo

Weighted A*

Weighted A*

A* with more heavily weighted heuristic:
f(n) = g(n) + w - h(n.state),
where weight w € Rar with w > 1 is a freely choosable parameter

Sest-first Search f Weighted A*
ooe

Weighted A*: Properties

weight parameter controls “greediness”’ of search:
m w = 0: like uniform cost search
mw=1: like A*

m w — oo: like greedy best-first search

with w > 1 properties analogous to A*:

m h admissible:
found solution guaranteed to be at most w times
as expensive as optimum when reopening is used

Summarn
0

Summary

3est-first Search

S
o

ummary
o

Summary

best-first graph search with evaluation function f:
m f = h: greedy best-first search
suboptimal, often very fast
mf=g+h A"
optimal if h admissible and consistent
mf =g+ w-h weighted A"
for w > 1 suboptimality factor at most w
under same conditions as for optimality of A*

	Best-first Search
	

	Greedy Best-first Search
	

	A*
	

	Weighted A*
	

	Summary
	

