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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

m decision which node is most promising uses heuristics. . .

m ...but not necessarily exclusively.

m implementation essentially like uniform cost search

m different choices of f ~~ different search algorithms
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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

m decision which node is most promising uses heuristics. . .

m ...but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

m implementation essentially like uniform cost search

m different choices of f ~~ different search algorithms
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:
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the most important best-first search algorithms:

m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts

m f(n) = g(n) + h(n.state): A*
~ combination of path cost and heuristic

m f(n) = g(n) + w - h(n.state): weighted A*
w € Rsr is a parameter
~ interpolates between greedy best-first search and A*
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

m f(n) = h(n.state): greedy best-first search
~~ only the heuristic counts

m f(n) = g(n) + h(n.state): A*
~ combination of path cost and heuristic

m f(n) = g(n) + w - h(n.state): weighted A*
w € Rsr is a parameter
~ interpolates between greedy best-first search and A*

What do we obtain with f(n) := g(n)? ~- uniform cost search
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Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

m here: graph search (i.e., with duplicate elimination),
which is the more common case
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Best-first Search

Best-first Search

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s’) < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )
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Best-first Search: Properties

properties:
m complete if h is safe: duplicate detection

m optimality depends on f
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Greedy Best-first Search
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Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f(n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)
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Example: Greedy Best-first Search for Route Planning

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

L Fagaras 176
AradCl Giurgiu 7
Hirsova 151

us [JVaslui :_a:éoj gii
Mehadia 241

Neamt 234

Oradea 380

Pitesti 100

) Rimnicu Vilcea 193

[JHirsova Sibiu 253

5 86 Timisoara 329

Urziceni 80

Dobreta u Vaslui 199

Eforie Zerind 374



Greedy Best-first Search
00080

Example: Greedy Best-first Search for Route Planning

(@) Theinitial state

366
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(@ Theinitial state

366

(b) After expanding Arad CArad >
ST o>

253 329 374
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Example: Greedy Best-first Search for Route Planning

(@ Theinitial state
366
(b) After expanding Arad CArad >
> Sbiu D Czeind>
253 329 374

(c) After expanding Sibiu

Rimnicu Vilce

366 176 380 193
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(@ Theinitial state

(b) After expanding Arad
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Greedy Best-first Search: Properties

m complete with safe heuristics
(like all variants of best-first graph search)

m suboptimal: solutions can be arbitrarily bad

m often very fast: one of the fastest search algorithms in practice
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combine greedy best-first search with uniform cost search:
f(n) = g(n) + h(n.state)

m trade-off between path cost and proximity to goal

m f(n) estimates overall cost of cheapest solution
from initial state via n to the goal
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A formal basis for the heuristic determination of minimum cost paths [PDF] ieee.org
PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - Get fulltext Uni Basel
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Although the problem of determining the minimum cost path through a graph arises naturally
in a number of interesting applications, there has been no underlying theory to guide the ...
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Correction to" a formal basis for the heuristic determination of minimum  Get fulltext Uni Basel
cost paths”

PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding

algorithm, A*, and proved that it had two important properties. In the notation of the paper, we ...

Yr Save D9 Cite Cited by 541 Related articles  All 11 versions

Shakey: from conception to history [PDF] @aaai.org
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desirable properties. It can be rigorously proved that (a) it always finds the shortest path, and (...
Yr Save D9 Cite Cited by 35 Related articles All 5 versions  $9
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[JHirsova

Dobreta ] .
Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374



A*
000080

Example: A" for Route Planning

(a) Theinitial state

366=0+366
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Example: A" for Route Planning

(a) Theinitial state

366=0+366

o @“pa“
> Sibiu D Timisoad Czeind>

393=140+253 447=118+329 449=75+374
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Example: A" for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

imisoad

393=140+253 447=118+329

449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193
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Example: A* for Route Planning

(a) Theinitial state

366=0+366

(b) After expanding Arad

Cimisoard

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374
646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea CArad >

449=75+374

526=366+160 417=317+100 553=300+253
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Example: A" for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253



Example: A* for Route Planning

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

526=366+160,

591=338+253 450=450+0

418=418+0 615=455+160 607=414+193
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A*: Properties

m complete with safe heuristics
(like all variants of best-first graph search)

m with reopening: optimal with admissible heuristics

m without reopening: optimal with heuristics
that are admissible and consistent
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Weighted A*

Weighted A*

A* with more heavily weighted heuristic:
f(n) = g(n) + w - h(n.state),
where weight w € Rar with w > 1 is a freely choosable parameter
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Weighted A*: Properties

weight parameter controls “greediness”’ of search:
m w = 0: like uniform cost search
mw=1: like A*

m w — oo: like greedy best-first search

with w > 1 properties analogous to A*:

m h admissible:
found solution guaranteed to be at most w times
as expensive as optimum when reopening is used
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Summary

best-first graph search with evaluation function f:
m f = h: greedy best-first search
suboptimal, often very fast
mf=g+h A"
optimal if h admissible and consistent
mf =g+ w-h weighted A"
for w > 1 suboptimality factor at most w
under same conditions as for optimality of A*
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