Basics of AI and Machine Learning Alternatives to Heuristic Search

David Speck

Linköping University

Slides modified from Basel AI group, with permission

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) [Symbolic Search](#page-9-0) Symbolic Search [Summary](#page-13-0)

Automated Planning: Overview

Chapter overview: automated planning

- **Introduction**
- The STRIPS Planning Formalism
- Other Planning Formalisms
- **Planning Heuristics**
- **Alternatives to Heuristic Search**

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) Sammary

The Big Three [Summary](#page-13-0)
 \bullet Summary
 \bullet Society Search Summary

[The Big Three](#page-2-0)

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) [Symbolic Search](#page-9-0) Symbolic Search [Summary](#page-13-0)

Planning Approaches: The Big Three

Of the many planning approaches, three techniques stand out:

- **Explicit search** \rightsquigarrow **previous chapters**
	- design choices: search algorithm, heuristic
- SAT planning \rightarrow overview in this chapter
- symbolic search \rightsquigarrow overview in this chapter

also: many algorithm portfolios

Satisficing or Optimal Planning?

must carefully distinguish:

- satisficing planning: any plan is OK (cheaper ones preferred)
- optimal planning: plans must have minimum cost

solved by similar techniques, but:

- details very different
- **almost no overlap between best techniques for satisficing** planning and best techniques for optimal planning
- **n** many tasks that are trivial for satisficing planners are impossibly hard for optimal planners

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) Sammary
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet\n\end{array}$

[SAT Planning](#page-5-0)

SAT Planning: Basic Idea

- **F** formalize problem of finding plan with a given horizon (length bound) as a propositional satisfiability problem and feed it to a generic SAT solver
- to obtain a (semi-) complete algorithm, try with increasing horizons until a plan is found $(=$ the formula is satisfiable)
- **n** important optimization: allow applying several non-conflicting actions "at the same time" so that a shorter horizon suffices

SAT Encodings: Variables

- given propositional planning task $\Pi = \langle V, I, G, A \rangle$
- given horizon $T \in \mathbb{N}_0$

Variables of SAT Encoding

- propositional variables v^i for all $v \in V, 0 \leq i \leq T$ encode state after i steps of the plan
- propositional variables a^i for all $a \in A, 1 \leq i \leq T$ encode action a applied in i -th step of the plan

[The Big Three](#page-2-0) Sattle Sattle Planning [Symbolic Search](#page-9-0) [Summary](#page-13-0) Summary

SAT Planning: Design Choices

SAT Encoding

- sequential or parallel
- **n** many ways of modeling planning semantics in logic
- \rightarrow main focus of research on SAT planning

Evaluation Strategy

- **a** always advance horizon by $+1$ or more aggressively
- possibly probe multiple horizons concurrently

SAT Solver

- out-of-the-box like MiniSAT, Glucose, Lingeling
- planning-specific modifications

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) Sample [Symbolic Search](#page-9-0) [Summary](#page-13-0)
 $\begin{array}{ccccc}\n\text{O} & \text{O} & \text{S} & \text{S} \\
\text{O} & \text{O} & \text{O} & \text{O} & \text{O} \\
\text{O} & \text{O} & \text{O} & \text{O} & \text{O} \\
\end{array}$

[Symbolic Search](#page-9-0)

Symbolic Search Planning: Basic Ideas

- search processes sets of states at a time
- operators, goal states, state sets reachable with a given cost represented by binary decision diagrams (BDDs) (or similar data structures)
- **hope:** exponentially large state sets can be represented as polynomially sized BDDs, which can be efficiently processed
- perform symbolic breadth-first search (or something more sophisticated) on these set representations

Symbolic Breadth-First Progression Search

prototypical algorithm:

```
Symbolic progression breadth-first search
def bfs-progression(V, I, G, A):
    goal := models(G)reached := \{I\}loop:
          if reached \cap goal \neq \emptyset:
               return solution found
          new-reached := reached \cup image(reached, A)if new-reached = reached
               return no solution exists
          reached := new-reached
```
 \rightsquigarrow If we can implement operations *models*, $\{I\}$, \cap , \neq Ø, ∪, *img* and $=$ efficiently, this is a reasonable algorithm.

Design Choice: Symbolic Data Structure

Which data structure should be used for the compact representation of sets of states?

- **binary decision diagrams (BDDs)**
- algebraic decision diagrams (ADDs)
- edge-valued multi-valued decision diagrams (EVMDDs)

[The Big Three](#page-2-0) [SAT Planning](#page-5-0) Sammary [Symbolic Search](#page-9-0) [Summary](#page-13-0) Symbolic Search Summary Summary

[Summary](#page-13-0)

Summary

big three classes of algorithms for classical planning:

- explicit search
	- design choices: search algorithm, heuristic
- **SAT** planning
	- design choices: SAT encoding, SAT solver, evaluation strategy
- symbolic search
	- \blacksquare design choices: symbolic data structure $+$ same ones as for explicit search