Basics of Al and Machine Learning
State-Space Search: Uniform Cost Search

Jendrik Seipp

Linképing University

Slides modified from Basel Al group, with permission



Introduction
®0

Introduction



Introduction

oe

Uniform Cost Search

m breadth-first search optimal if all action costs equal

m otherwise no optimality guarantee ~» example:

Bucharest



Introduction Algorithm Properties Summar

oe

Uniform Cost Search

m breadth-first search optimal if all action costs equal

m otherwise no optimality guarantee ~» example:

Sibiu 0 Fagaras

Bucharest

remedy: uniform cost search

m always expand a node with minimal path cost
(n.path_cost a.k.a. g(n))

m implementation: priority queue (min-heap) for open list



Algorithm
@00

Algorithm



Introduction Algorithm Properties
00 oe 0o

Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )




Introduction Algorithm Properties Summar
00 00 00 00

Uniform Cost Search: Discussion

m as in BFS-Graph, a set is sufficient for the closed list
B a tree search variant is possible, but rare
m identical to Dijkstra’s algorithm for shortest paths



Properties
0

Properties



Properties Summar
oe 00

Introduction Algorithm

Completeness and Optimality

properties of uniform cost search:

m uniform cost search is complete:
will eventually exhaust whole search space

m uniform cost search is optimal:
expands nodes by increasing path cost



Summan
0

Summary



Introduction A t Properties Summary
oo 0o o

Summary

uniform cost search: expand nodes in order of ascending path costs

m usually as a graph search
m then corresponds to Dijkstra’s algorithm

m complete and optimal



	Introduction
	

	Algorithm
	

	Properties
	

	Summary
	


