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Uniform Cost Search

m breadth-first search optimal if all action costs equal

m otherwise no optimality guarantee ~» example:
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m breadth-first search optimal if all action costs equal

m otherwise no optimality guarantee ~» example:
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remedy: uniform cost search

m always expand a node with minimal path cost
(n.path_cost a.k.a. g(n))

m implementation: priority queue (min-heap) for open list
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Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )
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Uniform Cost Search: Discussion

m as in BFS-Graph, a set is sufficient for the closed list
B a tree search variant is possible, but rare
m identical to Dijkstra’s algorithm for shortest paths
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Completeness and Optimality

properties of uniform cost search:

m uniform cost search is complete:
will eventually exhaust whole search space

m uniform cost search is optimal:
expands nodes by increasing path cost
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Summary

uniform cost search: expand nodes in order of ascending path costs

m usually as a graph search
m then corresponds to Dijkstra’s algorithm

m complete and optimal
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