TDDE56 Foundations of AI and ML

Introduction to word representations

Marco Kuhlmann Department of Computer and Information Science

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

One-hot vectors

- To process words using neural networks, we need to represent them as vectors of numerical values.
- The classical way to do this is to use **one-hot vectors** vectors in which all components but one are zero.

Word embeddings

Compared to one-hot vectors, word embeddings

- are shorter but dense
- support a useful notion of similarity
- can be learned from data

You shall know a word by the company it keeps

What do the following sentences tell us about *Garrotxa*?

- *Garrotxa* is made from milk.
- *Garrotxa* pairs well with crusty country bread.
- *Garrotxa* is aged in caves to enhance mould development.

Sentences taken from the English Wikipedia

The distributional hypothesis

The **distributional hypothesis** states that words with similar distributions have similar meanings.

with similar distributions = are used and occur in the same contexts

This suggests that we can learn word representations from co-occurrence statistics.

similar co-occurrence distributions = similar meanings

Eisenstein § 14.1

	cheese	bread	goat	sheep
cheese				
bread				
goat				
sheep				

as olives cheese or bread

	cheese	bread	goat	sheep
cheese		1		
bread				
goat				
sheep				

of sheep cheese and milk

as olives cheese or bread

	cheese	bread	goat	sheep
cheese		1		1
bread				
goat				
sheep				

	cheese	bread	goat	sheep
cheese		1	1	1
bread				
goat				
sheep				

	cheese	bread	goat	sheep	as olives cheese or bread
cheese		2	1	1	of sheep cheese and milk
bread					goat milk cheese can be
goat					bread and cheese for breakfa
sheep					macaroni and cheese with bread

	cheese	bread	goat	sheep	as olives cheese or bread
cheese		3	1	1	of sheep cheese and milk
bread					goat milk cheese can be
goat					bread and cheese for break
sheep					macaroni and cheese with brea

	cheese	bread	goat	sheep	
cheese	14	7	5	1	word vector for cheese
bread	7	12	0	0	
goat	5	0	8	12	
sheep	1	0	12	2	

Vector similarity = meaning similarity

	cheese	bread	goat	sheep
cheese	1.00	0.80	0.49	0.38
bread	0.80	1.00	0.17	0.04
goat	0.49	0.17	1.00	0.67
sheep	0.38	0.04	0.67	1.00

cosine similarities

vector space (PCA)

 $\cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$

Learning word embeddings

- Count-based methods: Matrix factorisation Minimise the difference between the co-occurrence matrix and an approximate reconstruction of it from word embeddings.
- Prediction-based methods: Neural networks

Maximise the likelihood of a corpus under a probability model that is conditioned on the word embeddings.

Evaluation of word embeddings

- visualisation of the embedding space
 Requires dimensionality reduction (PCA, t-SNE, UMAP)
- computing relative similarities cosine similarity, Euclidean distance
- similarity benchmarks

Example: odd one out – *breakfast lunch dinner <u>surgery</u>*

• analogy benchmarks

Example: woman is to man as sister is to ?

Eisenstein § 14.6

