Basics of AI and Machine Learning Board Games: Minimax Search and Evaluation Functions

Jendrik Seipp

Linköping University

Slides modified from Basel AI group, with permission

[Minimax Search](#page-1-0)

Terminology for Two-Player Games

- **Players** are traditionally called MAX and MIN.
- Our objective is to compute moves for MAX (MIN is the opponent).
- \blacksquare MAX tries to maximize its utility (given by the utility function u) in the reached terminal position.
- \blacksquare MIN tries to minimize u (which in turn maximizes MINs utility).

Example: Tic-Tac-Toe

game tree with player's turn (MAX/MIN) marked on the left last row: terminal positions with utility

Minimax: Computation

- **1.** depth-first search through game tree
- 2. Apply utility function in terminal position.
- **3.** Compute utility value of inner nodes from below to above through the tree:
	- MIN's turn: utility is minimum of utility values of children $\mathcal{L}_{\mathcal{A}}$
	- MAX's turn: utility is maximum of utility values of children
- move selection for MAX in root:

choose a move that maximizes the computed utility value (minimax decision)

Minimax: Discussion

- **Minimax is the simplest (decent) search algorithm for games**
- Yields optimal strategy[∗] (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly), but is too time-consuming for complex games.
- We obtain at least the utility value computed for the root, no matter how the opponent plays.
- \blacksquare In case the opponent plays perfectly, we obtain exactly that value.

(*) for games where no cycles occur; otherwise things get more complicated (because the tree will have infinite size in this case). What if the size of the game tree is too big for minimax? \rightarrow approximation by evaluation function

[Evaluation Functions](#page-21-0)

Evaluation Functions

- problem: game tree too big
- \blacksquare idea: search only up to certain depth
- **depth reached: estimate the utility according to** heuristic criteria (as if terminal position had been reached)

Example (evaluation function in chess)

- material: pawn 1, knight 3, bishop 3, rook 5, queen 9 positive sign for pieces of MAX, negative sign for MIN
- **pawn structure, mobility,** \ldots

rule of thumb: advantage of 3 points \rightsquigarrow clear winning position

Accurate evaluation functions are crucial!

- High values should relate to high "winning chances" in order to make the overall approach work.
- At the same time, the evaluation should be efficiently computable in order to be able to search deeply.

Linear Evaluation Functions

Usually weighted linear functions are applied:

$$
w_1f_1+w_2f_2+\cdots+w_nf_n
$$

where w_i are weights, and f_i are features.

- **Example 3 assumes that feature contributions are mutually independent** (usually wrong but acceptable assumption)
- **allows for efficient incremental computation** if most features are unaffected by most moves
- **Weights can be learned automatically.**
- **Features are (usually) provided by human experts.**

The idea dates back at least to Lolli (1763).

[Summary](#page-24-0)

Summary

Minimax is a tree search algorithm that plays perfectly (in the game-theoretic sense), but its complexity is $O(b^d)$ (branching factor b , search depth d).

 \blacksquare In practice, the search depth must be bounded \rightsquigarrow apply evaluation functions (usually linear combinations of features).