TDDE56: Problem Solving as Search

Fredrik Heintz Dept. of Computer Science, Linköping University fredrik.heintz@liu.se @FredrikHeintz

Problem-Solving through Search

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Search – Problem Definition

- **Initial State**: The state in which the agent starts or initial condition of the agent.
- **States**: All states that are reachable from initial state by any sequence of actions or all possible states that the agent can take. This is also referred to as State space.
- Actions: All possible actions that the agent can execute. Specifically, it provides the list of actions, that an agent can perform in a particular state. This is also referred to as Action space.
- **Transition Model**: This property describes the results of each action taken in a particular state.
- **Goal Test**: A way to check, whether a state is the goal.
- **Path Cost**: A function that assigns a numeric cost to a path w.r.t. performance measure

Vacuum World

- State Space: 2 positions, dirt or no dirt
- Initial State: Choose
- Goal States: States with no dirt in the rooms
- Actions: Left (L), Right (R), or Suck (S)
- Action costs: one unit per action
- Transition model:

Solving the Vacuum World

Solving the Vacuum World without Sensors

Search – Search Space

- **State space**: physical configuration
- **Search space**: abstract configuration often represented by a search tree or graph where a path is a possible solution.
- Search tree: representation of configurations and how they are connected by actions. A path represents a sequence of actions. The *root* is the initial state. The actions taken make the *branches* and the *nodes* are results of those actions. A node has depth, path cost and associated state in the state space.

Search Tree Construction

Oradea

Fagaras

Arad

Rimnicu Vilcea

Arad

Lugoj

Oradea

Arad

Oradea

140

151

Lugoj

Mehadia

120

70

75

Drobeta

Sibiu

80

Zerind

Timisoara

111

71

Arad

118

Search Strategies

- A *strategy* is defined by picking the order of node expansion.
- Strategies can be *evaluated* along the following dimensions:
 - Completeness does it find a solution if it exists?
 - *Time Complexity* number of nodes generated/expanded
 - Space Complexity maximum number of nodes in memory
 - Optimality does it always find a least cost solution
- Time and space complexity are *measured* in terms of:
 - *b maximum branching* factor of search tree
 - d depth of the least cost solution in the search tree
 - *m maximum length* of any path in the state space (possibly infinite)

Some Search Classes

- Uninformed Search (Blind Search)
 - No additional information about states besides that in the problem definition
 - Can only generate successors and compare against state.
 - Some examples:
 - Breadth-first search, Depth-first search, Iterative deepening DFS
- Informed Search (Heuristic Search)
 - Strategies have additional information as to whether non-goal states are more promising than others.
 - Some examples:
 - Greedy Best-First Search, A* Search

Breadth-First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure $node \leftarrow \text{NODE}(problem.INITIAL)$ **if** *problem*.IS-GOAL(*node*.STATE) **then return** *node frontier* \leftarrow a FIFO queue, with *node* as an element $reached \leftarrow \{problem.INITIAL\}$ while not IS-EMPTY(frontier) do $node \leftarrow POP(frontier)$ for each *child* in EXPAND(*problem*, *node*) do $s \leftarrow child.STATE$ **if** *problem*.IS-GOAL(*s*) **then return** *child* if s is not in reached then add s to reached add child to frontier return failure

Breadth-First Search

• It is complete

Depth-First Search

Depth-First Search

Heuristic Search

Straight line distance from city *n* to goal city *n*'

Assume the cost to get somewhere is a function of the distance traveled

Straight line distance to Bucharest from any city		h _{SLD()}	
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Notice the SLD under estimates the actual cost!

Heuristic:

Adversarial Search – Minimax

Applications of Search

- Game playing (chess, Go, ...)
- Constraint satisfaction
- Optimization
- Machine learning
- Planning
- ...

