
Basics of AI and Machine Learning
State-Space Search: Tree Search and Graph Search

Jendrik Seipp

Linköping University

Slides modified from Basel AI group, with permission



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

State-Space Search: Overview

Chapter overview: state-space search

Foundations

Basic Algorithms

Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

Heuristic Algorithms



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Introduction



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

Starting with initial state,

repeatedly expand a state by generating its successors.

Stop when a goal state is expanded

or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

tree search and

graph search

(Each class consists of a large number of concrete algorithms.)



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

Starting with initial state,

repeatedly expand a state by generating its successors.

Stop when a goal state is expanded

or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

tree search and

graph search

(Each class consists of a large number of concrete algorithms.)



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search

Tree Search

possible paths to be explored organized in a tree (search tree)

search nodes correspond 1:1 to paths from initial state

duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

search tree can have unbounded depth



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm: Discussion

discussion:

generic template for tree search algorithms

⇝ for concrete algorithm, we must (at least) decide
how to implement the open list

concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Reminder: Tree Search

reminder:

Tree Search

possible paths to be explored organized in a tree (search tree)

search nodes correspond 1:1 to paths from initial state

duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

search tree can have unbounded depth



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search

Graph Search

differences to tree search:

recognize duplicates: when a state is reached
on multiple paths, only keep one search node

search nodes correspond 1:1 to reachable states

search tree bounded, as number of states is finite

remarks:

some graph search algorithms do not immediately eliminate
all duplicates (⇝ later)

one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm: Discussion

discussion:

same comments as for generic tree search apply

in “pure” algorithm, closed list does not actually
need to store the search nodes

sufficient to implement closed as set of states
advanced algorithms often need access to the nodes,
hence we show this more general version here

some variants perform goal and duplicate tests elsewhere
(earlier) ⇝ following chapters



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Evaluating Search Algorithms



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

usually worst case analysis

usually measured in generated nodes



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

usually worst case analysis

usually measured in (concurrently) stored nodes



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary



Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary

tree search:

search nodes correspond 1:1 to paths from initial state

graph search:

search nodes correspond 1:1 to reachable states

⇝ duplicate elimination

generic methods with many possible variants


	Introduction
	

	Tree Search
	

	Graph Search
	

	Evaluating Search Algorithms
	

	Summary
	


