Basics of Al and Machine Learning
State-Space Search: Tree Search and Graph Search

Jendrik Seipp

Linképing University

Slides modified from Basel Al group, with permission



State-Space Search: Overview

Chapter overview: state-space search

m Foundations

m Basic Algorithms

m Tree Search and Graph Search
Breadth-first Search
Uniform Cost Search
Depth-first Search

m Heuristic Algorithms



Introduction
®0

Introduction



Introduction
oe

Search Algorithms

General Search Algorithm

m Starting with initial state,

m repeatedly expand a state by generating its successors.
m Stop when a goal state is expanded

m or all reachable states have been considered.




Introduction Tree Search G Searc v g Search Algorithms Summar
oe 5 00

Search Algorithms

General Search Algorithm

m Starting with initial state,

m repeatedly expand a state by generating its successors.
m Stop when a goal state is expanded

m or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:
m tree search and
m graph search

(Each class consists of a large number of concrete algorithms.)



@000

Tree Search



Introduction Tree Search G v g Search Algorithms Summar

0@00

Tree Search

m possible paths to be explored organized in a tree (search tree)

m search nodes correspond 1:1 to paths from initial state

m duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

m search tree can have unbounded depth




Introduction Tree Search G \ ng Search Algorithms

[e]e] le)

Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.insert(n’)
return unsolvable




Introduction Tree Search
00 ocooe

g Search Algorithms Summar

Generic Tree Search Algorithm: Discussion

discussion:

m generic template for tree search algorithms
~~ for concrete algorithm, we must (at least) decide
how to implement the open list

m concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons



Graph Search
[Yelelele)

Graph Search



Introduction Searc Graph Search v g Search Algorithms Summar

[e] lele]e}

Reminder: Tree Search

reminder:

m possible paths to be explored organized in a tree (search tree)

m search nodes correspond 1:1 to paths from initial state

m duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

m search tree can have unbounded depth




Introduction Searc Graph Search v ng Search Algorithms

Graph Search

[e]e] le]e}

Graph Search

differences to tree search:

m recognize duplicates: when a state is reached
on multiple paths, only keep one search node

m search nodes correspond 1:1 to reachable states

m search tree bounded, as number of states is finite

remarks:

m some graph search algorithms do not immediately eliminate
all duplicates (~ later)

m one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier



Introduction Tree Search Graph Search \ ng Search Algorithms

[e]e]e] e}

Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Graph Search

Introduction
oo 0000e

1g Search Algorithms

Summary

Generic Graph Search Algorithm: Discussion

discussion:

m same comments as for generic tree search apply
m in “pure” algorithm, closed list does not actually
need to store the search nodes

m sufficient to implement closed as set of states
m advanced algorithms often need access to the nodes,
hence we show this more general version here

m some variants perform goal and duplicate tests elsewhere
(earlier) ~~ following chapters



Evaluating Search Algorithms

@0000

Evaluating Search Algorithms



0@000

Introduction earc Gr: earc Evaluating Search Algorithms Summar

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete




Evaluating Search Algorithms
00e00

Criteria: Optimality

four criteria for evaluating search algorithms:

Are the solutions returned by the algorithm always optimal? I




Introduction @ 5 Searc Evaluating Search Algorithms Summar

[e]e]e] lo}

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?
m usually worst case analysis

m usually measured in generated nodes




Introduction earc Gr: earc Evaluating Search Algorithms Summar

[e]e]e]e] }

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?
m usually worst case analysis

m usually measured in (concurrently) stored nodes




Summan
0

Summary



Introduction c 5 Searc valuating Search Algorithms Summary
00 ¢ o

Summary

tree search:

m search nodes correspond 1:1 to paths from initial state

graph search:
m search nodes correspond 1:1 to reachable states

~> duplicate elimination

generic methods with many possible variants



	Introduction
	

	Tree Search
	

	Graph Search
	

	Evaluating Search Algorithms
	

	Summary
	


