
Basics of AI and Machine Learning
State-Space Search: Depth-first Search

Jendrik Seipp

Linköping University

Slides modified from Basel AI group, with permission

Depth-first Search Summary

Depth-first Search

Depth-first Search Summary

Depth-first Search

Depth-first search (DFS) expands nodes
in opposite order of generation (LIFO).

⇝ deepest node expanded first
⇝ open list implemented as stack

Depth-first Search Summary

Depth-first Search: Example

A

open: A

Depth-first Search Summary

Depth-first Search: Example

A

B C

open: C, B

Depth-first Search Summary

Depth-first Search: Example

A

B

D E

C

open: C, E, D

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E, J, I

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E, J

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

F G H

open: H, G, F

Depth-first Search Summary

Depth-first Search: Example

A

B

D

I J

E

C

F G H

⇝ solution found!

Depth-first Search Summary

Depth-first Search: Some Properties

almost always implemented as a tree search (we will see why)

not complete, not semi-complete, not optimal: cycles, does
not explore in layers

complete for acyclic state spaces,
e.g., if state space directed tree

Depth-first Search Summary

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Depth-first Search Summary

Non-recursive Depth-first Search: Discussion

discussion:

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

⇝ CPU stack as implicit open list

⇝ no search node data structure needed

Depth-first Search Summary

Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := depth first search(s ′)
if solution ̸= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())

Depth-first Search Summary

Summary

Depth-first Search Summary

Summary

depth-first search: expand nodes in LIFO order

usually as a tree search

easy to implement recursively

very memory-efficient

Depth-first Search Summary

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first bounded deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

space O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
ℓ depth bound

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs

	Depth-first Search
	

	Summary
	

