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Classification

classification:

Propositional Logic

environment:

static vs. dynamic

deterministic vs. non-deterministic vs. stochastic

fully vs. partially vs. not observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

(applications also in more complex environments)
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Propositional Logic: Motivation

propositional logic

modeling and representing problems and knowledge

basics for general problem descriptions and solving strategies
(⇝ automated planning)

allows for automated reasoning
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Relationship to CSPs

satisfiability problem in propositional logic can be viewed as
non-binary CSP over {F,T}
formula encodes constraints

solution: satisfying assignment of values to variables

SAT algorithms for this problem: ⇝ DPLL
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Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

two-missionaries-are-on-left-shore

one-cannibal-is-on-left-shore

boat-is-on-left-shore

...

problem description for general problem solvers

states represented as truth values of atomic propositions
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Propositional Logic: Intuition

propositions: atomic statements over the world
that cannot be divided further

Propositions with logical connectives like
“and”, “or” and “not” form the propositional formulas.
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Syntax

Σ alphabet of propositions
(e.g., {P,Q,R, . . . } or {X1,X2,X3, . . . }).

Definition (propositional formula)

⊤ and ⊥ are formulas.

Every proposition in Σ is an (atomic) formula.

If φ is a formula, then ¬φ is a formula (negation).

If φ and ψ are formulas, then so are

(φ ∧ ψ) (conjunction)
(φ ∨ ψ) (disjunction)
(φ→ ψ) (implication)

binding strength: (¬) > (∧) > (∨) > (→)
(may omit redundant parentheses)
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Semantics

A formula is true or false,
depending on the interpretation of the propositions.

Semantics: Intuition

A proposition p is either true or false.
The truth value of p is determined by an interpretation.

The truth value of a formula follows from
the truth values of the propositions.

Example

φ = (P ∨ Q) ∧ R

If P and Q are false, then φ is false
(independent of the truth value of R).

If P and R are true, then φ is true
(independent of the truth value of Q).
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Semantics: Formally

defined over interpretation I : Σ → {T,F}
interpretation I : assignment of propositions in Σ

When is a formula φ true under interpretation I?
symbolically: When does I |= φ hold?
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Semantics: Formally

Definition (I |= φ)

I |= ⊤ and I ̸|= ⊥
I |= P iff I (P) = T for P ∈ Σ

I |= ¬φ iff I ̸|= φ

I |= (φ ∧ ψ) iff I |= φ and I |= ψ

I |= (φ ∨ ψ) iff I |= φ or I |= ψ

I |= (φ→ ψ) iff I ̸|= φ or I |= ψ

I |= Φ for a set of formulas Φ iff I |= φ for all φ ∈ Φ
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Examples

Example (Interpretation I )

I = {P 7→ T,Q 7→ T,R 7→ F,S 7→ F}

Which formulas are true under I?

φ1 = ¬(P ∧ Q) ∧ (R ∧ ¬S). Does I |= φ1 hold?

φ2 = (P ∧ Q) ∧ ¬(R ∧ ¬S). Does I |= φ2 hold?

φ3 = (R → P). Does I |= φ3 hold?
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Terminology

Definition (model)

An interpretation I is called a model of φ if I |= φ.

Definition (satisfiable etc.)

A formula φ is called

satisfiable if there is an interpretation I such that I |= φ.

unsatisfiable if φ is not satisfiable.

falsifiable if there is an interpretation I such that I ̸|= φ.

valid (= a tautology) if I |= φ for all interpretations I .
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Terminology

Definition (logical equivalence)

Formulas φ and ψ are called logically equivalent (φ ≡ ψ)
if for all interpretations I : I |= φ iff I |= ψ.
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Truth Tables

Truth Tables

How to determine automatically if a given formula is
(un)satisfiable, falsifiable, valid?

⇝ simple method: truth tables

example: Is φ = ((P ∨ H) ∧ ¬H) → P valid?

P H P ∨ H ((P ∨ H) ∧ ¬H) ((P ∨ H) ∧ ¬H) → P

F F F F T

F T T F T

T F T T T

T T T F T

I |= φ for all interpretations I ⇝ φ is valid.

satisfiability, falsifiability, unsatisfiability?
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Normal Forms: Terminology

Definition (literal)

If P ∈ Σ, then the formulas P and ¬P are called literals.

P is called positive literal, ¬P is called negative literal.

The complementary literal to P is ¬P and vice versa.
For a literal ℓ, the complementary literal to ℓ is denoted with ℓ̄.
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Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.
The empty clause ⊥ is also written as □.
Clauses consisting of only one literal are called unit clauses.

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.
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Normal Forms

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form)
if φ is a conjunction of 0 or more clauses:

φ =
n∧

i=1

 mi∨
j=1

ℓi ,j


A formula φ is in disjunctive normal form (DNF)
if φ is a disjunction of 0 or more monomials:

φ =
n∨

i=1

 mi∧
j=1

ℓi ,j
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Normal Forms

For every propositional formula, there exists
a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF

important rules for conversion to CNF:

(φ→ ψ) ≡ (¬φ ∨ ψ) ((→)-elimination)

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) (De Morgan)

¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (De Morgan)

¬¬φ ≡ φ (double negation)

((φ ∧ ψ) ∨ η) ≡ ((φ ∨ η) ∧ (ψ ∨ η)) (distributivity)

There are formulas φ for which every logically equivalent formula
in CNF and DNF is exponentially longer than φ.
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Summary (1)

Propositional logic forms the basis for a general
representation of problems and knowledge.

Propositions (atomic formulas) are statements over the world
which cannot be divided further.

Propositional formulas combine atomic formulas
with ¬, ∧, ∨, → to more complex statements.

Interpretations determine which atomic formulas are true
and which ones are false.
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Summary (2)

important terminology:

model
satisfiable, unsatisfiable, falsifiable, valid
logically equivalent

different kinds of formulas:

atomic formulas and literals
clauses and monomials
conjunctive normal form and disjunctive normal form
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