Basics of AI and Machine Learning Propositional Logic: Basics

Daniel Gnad

Linköping University

Slides modified from Basel AI group, with permission

Classification

classification:

Propositional Logic

environment:

- static vs. dynamic
- deterministic vs. non-deterministic vs. stochastic
- fully vs. partially vs. not observable
- discrete vs. continuous
- single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

(applications also in more complex environments)

Motivation •0000

Motivation

Propositional Logic: Motivation

propositional logic

- modeling and representing problems and knowledge
- basics for general problem descriptions and solving strategies (~> automated planning)
- allows for automated reasoning

Relationship to CSPs

- satisfiability problem in propositional logic can be viewed as non-binary CSP over {F, T}
- formula encodes constraints
- solution: satisfying assignment of values to variables
- SAT algorithms for this problem: ~→ DPLL

Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

two-missionaries-are-on-left-shore
one-cannibal-is-on-left-shore
boat-is-on-left-shore

. . .

- problem description for general problem solvers
- states represented as truth values of atomic propositions

Motivation

Propositional Logic: Intuition

propositions: atomic statements over the world that cannot be divided further

Propositions with logical connectives like "and", "or" and "not" form the propositional formulas.

Syntax	
- o	

Syntax

Motivation	Syntax	Semantics	Normal Forms	Summary
00000	⊙●	00000000	00000	000
Syntax				

 Σ alphabet of propositions (e.g., { P, Q, R, \dots } or { X_1, X_2, X_3, \dots }).

Definition (propositional formula)

- \top and \perp are formulas.
- Every proposition in Σ is an (atomic) formula.
- If φ is a formula, then $\neg \varphi$ is a formula (negation).
- \blacksquare If φ and ψ are formulas, then so are
 - $(\varphi \land \psi)$ (conjunction)
 - $(\varphi \lor \psi)$ (disjunction)
 - $(\varphi \rightarrow \psi)$ (implication)

binding strength: $(\neg) > (\land) > (\lor) > (\rightarrow)$ (may omit redundant parentheses)

	ntax
J)	

Semantics

Semantics

A formula is true or false, depending on the interpretation of the propositions.

Semantics: Intuition

- A proposition p is either true or false.
 The truth value of p is determined by an interpretation.
- The truth value of a formula follows from the truth values of the propositions.

Example

$$\varphi = (P \lor Q) \land R$$

- If P and Q are false, then φ is false (independent of the truth value of R).
- If P and R are true, then φ is true (independent of the truth value of Q).

Semantics: Formally

- defined over interpretation $I : \Sigma \to {\mathbf{T}, \mathbf{F}}$
- interpretation I: assignment of propositions in Σ
- When is a formula φ true under interpretation *I*? symbolically: When does *I* ⊨ φ hold?

Semantics: Formally

Definition $(I \models \varphi)$

•
$$I \models \top$$
 and $I \not\models \bot$

I
$$\models$$
 P iff *I*(*P*) = **T** for *P* $\in \Sigma$

$$\blacksquare I \models \neg \varphi \text{ iff } I \not\models \varphi$$

•
$$I \models (\varphi \land \psi)$$
 iff $I \models \varphi$ and $I \models \psi$

I
$$\models$$
 ($\varphi \lor \psi$) iff I $\models \varphi$ or I $\models \psi$

•
$$I \models (\varphi \rightarrow \psi)$$
 iff $I \not\models \varphi$ or $I \models \psi$

I
$$\models \Phi$$
 for a set of formulas Φ iff $I \models \varphi$ for all $\varphi \in \Phi$

Motivation	Syntax	Semantics	Normal Forms	Summary
00000	00	00000000	00000	000

Examples

Example (Interpretation *I*)

$$I = \{P \mapsto \mathsf{T}, Q \mapsto \mathsf{T}, R \mapsto \mathsf{F}, S \mapsto \mathsf{F}\}$$

Which formulas are true under *I*?

•
$$\varphi_1 = \neg (P \land Q) \land (R \land \neg S)$$
. Does $I \models \varphi_1$ hold?

•
$$\varphi_2 = (P \land Q) \land \neg (R \land \neg S)$$
. Does $I \models \varphi_2$ hold?

•
$$\varphi_3 = (R \rightarrow P)$$
. Does $I \models \varphi_3$ hold?

Motivation	Syntax	Semantics	Normal Forms	Summary
00000	00	00000000	00000	000

Definition (model)

Ierminology

An interpretation *I* is called a model of φ if $I \models \varphi$.

Definition (satisfiable etc.)

A formula φ is called

- **satisfiable** if there is an interpretation I such that $I \models \varphi$.
- **unsatisfiable** if φ is not satisfiable.
- **falsifiable** if there is an interpretation I such that $I \not\models \varphi$.

• valid (= a tautology) if $I \models \varphi$ for all interpretations I.

Motivation	Syntax	Semantics	Normal Forms	Summary
00000	00	000000●0	00000	000
Terminology	ý			

Definition (logical equivalence)

Formulas φ and ψ are called logically equivalent ($\varphi \equiv \psi$) if for all interpretations *I*: $I \models \varphi$ iff $I \models \psi$.

Motivation	Syntax	Semantics	Normal Forms	Summary
00000	00	0000000●	00000	000
Truth Tables	5			

Truth Tables

How to determine automatically if a given formula is (un)satisfiable, falsifiable, valid?

 \rightsquigarrow simple method: truth tables

example: Is $\varphi = ((P \lor H) \land \neg H) \to P$ valid?

Ρ	H	$P \lor H$	$((P \lor H) \land \neg H)$	$((P \lor H) \land \neg H) \to P$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	Т	Т
Т	Т	Т	F	Т

 $I \models \varphi$ for all interpretations $I \rightsquigarrow \varphi$ is valid.

satisfiability, falsifiability, unsatisfiability?

Syntax 00 Semantics 00000000 Normal Forms

Summary 000

Normal Forms

Normal Forms: Terminology

Definition (literal)

If $P \in \Sigma$, then the formulas P and $\neg P$ are called literals. P is called positive literal, $\neg P$ is called negative literal. The complementary literal to P is $\neg P$ and vice versa. For a literal ℓ , the complementary literal to ℓ is denoted with $\overline{\ell}$. Semantics

Normal Forms

Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.

The empty clause \perp is also written as \Box .

Clauses consisting of only one literal are called unit clauses.

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

Normal Forms

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{m_i} \ell_{i,j}\right)$$

A formula φ is in disjunctive normal form (DNF) if φ is a disjunction of 0 or more monomials:

$$\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{i,j} \right)$$

Normal Forms

For every propositional formula, there exists

a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF

important rules for conversion to CNF:

$$\begin{array}{ll} (\varphi \rightarrow \psi) \equiv (\neg \varphi \lor \psi) & ((\rightarrow)\text{-elimination}) \\ \neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi) & (De \ \text{Morgan}) \\ \neg (\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi) & (De \ \text{Morgan}) \\ \neg \neg \varphi \equiv \varphi & (double \ \text{negation}) \\ \hline ((\varphi \land \psi) \lor \eta) \equiv ((\varphi \lor \eta) \land (\psi \lor \eta)) & (distributivity) \end{array}$$

There are formulas φ for which every logically equivalent formula in CNF and DNF is exponentially longer than φ .

		S.
		J

Semantics 00000000 Normal Form: 00000 Summary ●00

Summary

- Propositional logic forms the basis for a general representation of problems and knowledge.
- Propositions (atomic formulas) are statements over the world which cannot be divided further.
- Propositional formulas combine atomic formulas with ¬, ∧, ∨, → to more complex statements.
- Interpretations determine which atomic formulas are true and which ones are false.

Summary (2)

- important terminology:
 - model
 - satisfiable, unsatisfiable, falsifiable, valid
 - logically equivalent
- different kinds of formulas:
 - atomic formulas and literals
 - clauses and monomials
 - conjunctive normal form and disjunctive normal form